Библиотека knigago >> Литература по эпохам >> Литература ХX века (эпоха Социальных революций) >> Семь шагов в небо


СЛУЧАЙНЫЙ КОММЕНТАРИЙ

# 2187, книга: Жестяной король
автор: Наиль Анверович Якупов

"Жестяной король" - это захватывающая и оригинальная история, которая с головой увлекает в мир будущего. Наиль Якупов мастерски создает вселенную, где человечество достигло технологических высот, но ценой потери своей человечности. Главный герой, Марк, - гениальный изобретатель, который создает невероятные роботизированные машины, называемые "жестянщиками". Однако его творения оказываются более разумными, чем он мог себе представить, и быстро берут власть в свои руки,...

СЛУЧАЙНАЯ КНИГА

«Заказ» на конкурента. Фридрих Евсеевич Незнанский
- «Заказ» на конкурента

Жанр: Детектив

Год издания: 2002

Серия: Агентство «Глория»

Константин Петрович Феоктистов - Семь шагов в небо

Семь шагов в небо
Книга - Семь шагов в небо.  Константин Петрович Феоктистов  - прочитать полностью в библиотеке КнигаГо
Название:
Семь шагов в небо
Константин Петрович Феоктистов

Жанр:

Биографии и Мемуары, Астрономия и Космос, Научно-популярная и научно-познавательная литература, Литература ХX века (эпоха Социальных революций), Советские издания, Авиация, ракетная и космическая техника, Для широкого круга читателей

Изадано в серии:

неизвестно

Издательство:

Молодая гвардия

Год издания:

ISBN:

неизвестно

Отзывы:

Комментировать

Рейтинг:

Поделись книгой с друзьями!

Помощь сайту: донат на оплату сервера

Краткое содержание книги "Семь шагов в небо"

Герой Советского Союза, летчик-космонавт СССР, проектант космических кораблей, доктор технических наук, профессор К. П. Феоктистов рассказывает о разработке первых космических кораблей и станций, о проблемах развития пилотируемых полетов, о космическом будущем человечества.


К этой книге применимы такие ключевые слова (теги) как: космонавтика,космос

Читаем онлайн "Семь шагов в небо". [Страница - 3]

совершить по ней полет от одного витка до нескольких суток и возвратиться на Землю. На борту должен быть человек, с тем чтобы провести исследование его самочувствия и работоспособности в условиях космического полета, а также некоторые научные наблюдения и эксперименты.

В основе осуществления такого полета лежало достижение высокой надежности ракеты-носителя (это дело ракетчиков), конструкции корабля, системы управления, обеспечения жизнедеятельности космонавтов, спуска, приземления. Самой трудной и ответственной задачей было обеспечение возвращения космонавта на Землю.

В те годы, о которых мы сейчас ведем речь, многие специалисты даже в авиации практически не представляли, как можно решить эту задачу: затормозить и спустить с орбиты аппарат, движущийся со скоростью 8 километров в секунду (29 тысяч километров в час или 25 скоростей звука!), чтобы он не сгорел при входе в плотные слои атмосферы. Из газовой динамики было очевидно, что у лобовой части аппарата должна возникнуть плазма с температурой 6―10 тысяч градусов. Как отвести тепло, чтобы космонавт не «изжарился», — вот был вопрос вопросов, и в реальность решения этой задачи в ближайшие годы кое-кто тогда просто не верил.

А между тем в это время (во второй половине 50-х годов) уже были найдены методы расчета теплозащиты возвращающихся с орбиты объектов и показано, что создание ее вполне реально с конструктивной точки зрения. Это был результат исследований, проведенных академиками М. В. Келдышем, Г. И. Петровым, В. С. Авдуевским (тогда молодым доктором наук) и другими учеными. Специалисты нашего КБ нашли также оптимальный для того времени материал для теплозащитного покрытия: им оказался хорошо известный асботекстолит. Он обладает свойством, поглощая огромные количества тепла, не плавиться, а испаряться в потоке набегающего воздуха. Не очень легкий материал, но достаточно эффективный. Однако создать конструкцию теплозащиты только полдела. Нужно найти такую компоновку аппарата, чтобы масса теплозащиты оказалась минимальной.

Но прежде всего нужно было решить другую принципиальную задачу — выбрать способ возвращения корабля. Вариантов имелось несколько. О крыльях мы уже говорили. Был еще вариант торможения и посадки с помощью авторотирующих винтов, подобных вертолетным. Эта схема очень нравилась Сергею Павловичу. Но наши расчеты показали, что эффективной работы от них добиться трудно.

Мы подготовили и выпустили отчет об этом. Но Королев тогда отказался подписывать его, хотя вроде бы и смирился с тем, что эта схема не получается. Позднее я узнал, что года два спустя он нашел группу инженеров, которые с интересом стали разрабатывать этот вариант. Потом к этому подключился даже один институт. Но прошли годы, и эта разработка, естественно, кончилась ничем.

В марте — апреле 1958 года сделали окончательный выбор: спуск должен быть баллистическим, без подъемной силы, с парашютной системой посадки. Анализ и расчеты показали, что этот способ наиболее прост.

Следующий шаг — выбор формы корабля, вернее, возвращаемой его части. Казалось бы, естественно возвращать на Землю весь корабль. Но в этом случае масса тепловой защиты и парашютной системы, которая зависела от размеров и массы возвращаемого аппарата, получалась слишком большой. Нельзя допустить, чтобы теплозащита «съела» все запасы массы, необходимые для различного оборудования, обеспечения жизнедеятельности, топлива для ориентации и посадки. Значит, размеры возвращаемой части космического корабля нужно свести к минимуму.

Так возникло понятие спускаемого аппарата. А что оставалось вне его? На долю отсека, названного приборно-агрегатным, приходилось все то, без чего мог жить космонавт и без чего можно было обойтись в течение получаса спуска корабля с орбиты: тормозная двигательная установка с топливными баками, система управления, радиооборудование, телеметрия.

Если приборный отсек мог иметь любую форму, которая вписывалась бы в габариты обтекателя ракеты, то спускаемый аппарат мог иметь конфигурацию только вполне определенную. Условия такие: достаточный объем, хорошая устойчивость на спуске и как можно меньший вес теплозащиты. При расчете траектории спуска, тепловых потоков, решении проблемы устойчивости надо было учесть аэродинамику на гиперзвуковых, околозвуковых и дозвуковых скоростях. Рассматривались различные конфигурации: конус с различными --">

Оставить комментарий:


Ваш e-mail является приватным и не будет опубликован в комментарии.