Библиотека knigago >> Наука, Образование: прочее >> Научная литература >> Творчество как точная наука. Теория решения изобретательских задач

Генрих Саулович Альтов - Творчество как точная наука. Теория решения изобретательских задач

Творчество как точная наука. Теория решения изобретательских задач
Книга - Творчество как точная наука. Теория решения изобретательских задач.  Генрих Саулович Альтов  - прочитать полностью в библиотеке КнигаГо
Название:
Творчество как точная наука. Теория решения изобретательских задач
Генрих Саулович Альтов

Жанр:

Научная литература, Литература ХX века (эпоха Социальных революций), Советские издания, Конструирование, изобретательство, рационализаторство

Изадано в серии:

неизвестно

Издательство:

Советское радио

Год издания:

ISBN:

неизвестно

Отзывы:

Комментировать

Рейтинг:

Поделись книгой с друзьями!

Помощь сайту: донат на оплату сервера

Краткое содержание книги "Творчество как точная наука. Теория решения изобретательских задач"

Творчество изобретателей издавна связано с представлениями об «озарении», случайных находках и прирожденных способностях. Однако современная научно-техническая революция вовлекла в техническое творчество миллионы людей и остро поставила проблему повышения эффективности творческого мышления. Появилась теория решения изобретательских задач, которой и посвящена эта книга.
Автор, знакомый многим читателям по книгам «Основы изобретательства», «Алгоритм изобретения» и другим, рассказывает о новой технологии творчества, ее возникновении, современном состоянии и перспективах. В книге разобраны 70 задач, приведена программа решения изобретательских задач АРИЗ-77 и необходимые для ее использования материалы.
Книга рассчитана на широкий круг читателей, в первую очередь на инженеров, разработчиков новой техники, изобретателей, студентов технических вузов. На изобретательских примерах рассмотрены и вопросы управления творческим процессом вообще, поэтому книга адресована и читателям, не связанным с техническим творчеством. Особый интерес книга представляет для научных работников и исследователей в области кибернетики, искусственного интеллекта, психологии мышления.

Читаем онлайн "Творчество как точная наука. Теория решения изобретательских задач". [Страница - 93]

разработке полученной идеи? Записать возможные подзадачи - изобретательские, конструкторские, расчетные, организационные.

Часть 6. Развитие полученного ответа

6.1. Определить, как должна быть изменена нодсистема, в которую входит измененная система.

6.2. Проверить, может ли измененная система применяться по-новому.

6.3. Использовать полученный ответ при решении других технических задач.

а. Рассмотреть возможность использования идеи, обратной полученной.

б. Построить таблицу «расположение частей - агрегатные состояния изделия» или таблицу «использованные поля - агрегатные состояния изделия» и рассмотреть возможные перестройки ответа по позициям этих таблиц.

Часть 7. Анализ хода решения

7.1. Сравнить реальный ход решения с теоретическим (по АРИЗ). Если есть отклонения, записать.

7.2. Сравнить полученный ответ с табличными данными (таблица вепольных преобразований, таблица физических эффектов, таблица основных приемов). Если есть отклонения, записать.

ПРИЛОЖЕНИЕ 2 ТИПОВЫЕ МОДЕЛИ ИЗОБРЕТАТЕЛЬСКИХ ЗАДАЧ И ИХ ВЕПОЛЬНЫЕ ПРЕОБРАЗОВАНИЯ

Тип 1. Дан один элемент

1. Вещество плохо поддается управлению (обнаружению, измерению, изменению); требуется обеспечить эффективное управление.

а. Общий путь решения задач этого класса - достройка веполя (введение второго вещества и поля).

б. Для задач на обнаружение и измерение - стандарт 1. Введение второго вещества (например, люминофора, ферромагнетика и т. п.), взаимодействующего с внешним электромагнитным полем):


Книгаго: Творчество как точная наука. Теория решения изобретательских задач. Иллюстрация № 27
в. Для задач на перемещение, дробление, обработку поверхности, деформации, изменение вязкости, прочности и т. п. - стандарт 4. Введение ферромагнитных частиц и магнитного поля:


Книгаго: Творчество как точная наука. Теория решения изобретательских задач. Иллюстрация № 28
г. Если нельзя вводить В2-стандарт 8 (измерение собственной частоты колебаний) и 10 (обходные пути: вместо В2 вводят поле, а также «наружное» В2, вводят В2 на время или в очень малых дозах, используют в качестве В2 часть В1, используют вместо объекта его копию, вводят В2 в виде химических соединений).

2. Поле плохо поддается управлению (обнаружению, измерению, изменению, преобразованию в другое поле); требуется обеспечить эффективное управление.

а. Преобразование исходного поля П1 с помощью вещества-преобразователя или двух взаимодействующих веществ:


Книгаго: Творчество как точная наука. Теория решения изобретательских задач. Иллюстрация № 29

Книгаго: Творчество как точная наука. Теория решения изобретательских задач. Иллюстрация № 30
б. Введение вещества В, которое меняет свои свойства под действием поля П1, причем это изменение легко обнаруживается с помощью поля П2, действующего на В:


Книгаго: Творчество как точная наука. Теория решения изобретательских задач. Иллюстрация № 31
3. Вещество (или поле) обладает двумя конфликтующими сопряженными свойствами; требуется улучшить одно свойство, не ухудшая другого.

а. Задачи этого класса переводят в задачи классов 1 и 2 заменой исходного вещества В (или поля П) на вещество (или поле ), которому заранее в полной мере придано одно из сопряженных свойств:


Книгаго: Творчество как точная наука. Теория решения изобретательских задач. Иллюстрация № 32
Например, задачу --">

Оставить комментарий:


Ваш e-mail является приватным и не будет опубликован в комментарии.