Библиотека knigago >> Науки естественные >> Физика >> Мир физики и физика мира. Простые законы мироздания

Джим Аль-Халили - Мир физики и физика мира. Простые законы мироздания

Мир физики и физика мира. Простые законы мироздания
Книга - Мир физики и физика мира. Простые законы мироздания.  Джим Аль-Халили  - прочитать полностью в библиотеке КнигаГо
Название:
Мир физики и физика мира. Простые законы мироздания
Джим Аль-Халили

Жанр:

Физика, Научная литература

Изадано в серии:

неизвестно

Издательство:

Питер

Год издания:

ISBN:

978-5-4461-1754-3

Отзывы:

Комментировать

Рейтинг:

Поделись книгой с друзьями!

Помощь сайту: донат на оплату сервера

Краткое содержание книги "Мир физики и физика мира. Простые законы мироздания"

Фантастические масштабы и диапазон тем, которыми занимается современная физика, поражают воображение. Мы знаем, из чего состоит всё (или почти всё), что нас окружает, видим невидимое, исследуем связи всех кубиков мироздания, можем проследить эволюцию Вселенной чуть ли не с момента зарождения пространства и времени, а законы физики позволяют создавать технологии, которые меняют нашу жизнь.
Всё, что окружает вас в настоящий момент, всё, что создало или построило человечество, стало реальностью благодаря нашему понимаю законов природы – сил, участвующих в формировании мира и свойств материи, на которую эти силы воздействуют. Как же понять законы мира, в котором мы живем?
Джим Аль-Халили – автор бестселлеров и ведущий BBC – признается в любви к физике и хочет показать, насколько она прекрасна. Прочитав эту книгу, вы сможете не только понять, что физики вкладывают в понятия «пространство и время», «энергия и материя», но и узнать, что ждет нас в будущем. Темная материя и энергия, мультивселенные и многое другое перестанут быть для вас пустыми словами.
Познакомьтесь с рассказом о современной физике без формул и занудных объяснений!
В формате PDF A4 сохранён издательский дизайн.

Читаем онлайн "Мир физики и физика мира. Простые законы мироздания" (ознакомительный отрывок). [Страница - 5]

вокруг нас, как материя взаимодействует со светом – и, таким образом, объяснить почти все окружающие нас явления. Лишь один из ее разделов, квантовая электродинамика, лежит в самой основе науки химии!

Однако Стандартная модель не является исчерпывающей в том, что касается природы материи, поскольку она не описывает силы притяжения, а также не объясняет темной материи и темной энергии, которые на пару образуют большую часть того, из чего состоит Вселенная. Ответы на одни вопросы естественным образом порождают новые вопросы, а физики продолжают свои исследования «за пределами Стандартной модели» в попытке разобраться с этими важнейшими «неизвестными».

Как мы продвигаемся вперед

Успехи в физике более, чем в любой другой науке, обусловлены взаимодействием теории и эксперимента. Теории проходят испытание временем только в том случае, если они подтверждаются результатами опытов. Теория хороша только тогда, когда она позволяет прогнозировать результаты, которые можно подтвердить в лаборатории. Но если экспериментальные результаты противоречат теории, то последнюю придется изменить или даже вообще от нее отказаться. И наоборот, лабораторный опыт может указать на те явления, которые еще не получили объяснения и требуют дальнейшего развития теории. Ни в какой другой науке мы не увидим такого удивительного взаимодействия. Теоремы чистой математики доказываются с помощью логики, дедукции и аксиом. Они не требуют подтверждения фактами из окружающей действительности. Напротив, геология, этология и психология поведения в основном опираются на наблюдения, и наше продвижение в этих дисциплинах зависит от кропотливого сбора данных или тщательно разработанных лабораторных тестов. Однако физика может прогрессировать только в том случае, если теория и эксперимент идут рука об руку, поочередно подтягивая друг друга и указывая на следующий выступ на склоне.

Луч света, направленный на неизведанное, – еще одна хорошая метафора, отражающая то, как физики разрабатывают свои теории и модели, как они придумывают эксперимент для проверки какого-либо механизма. Если говорить о поиске новых идей в физике, то всех исследователей можно, грубо говоря, разделить на два типа. Представьте себе, что вы идете домой темной, безлунной ночью, и вдруг вы понимаете, что в вашем кармане дыра и в какой-то момент из нее выпали ключи. Вы знаете, что они должны лежать где-то на том участке дороги, который вы только что прошли, поэтому идете обратно по своим следам. Но разве при этом вы осматриваете только освещенные фонарями участки? А может, вы осмотрите и неосвещенные участки, которые оказались между фонарями? Ваши ключи, скорее всего, упали именно там, но найти их будет труднее.

Так вот, есть физики, работающие «на свету», и физики, работающие «в темноте». Первые предпочитают не рисковать и разрабатывают теории, которые можно проверить экспериментально, – они ищут там, где «светло». Это значит, что они, как правило, не выдвигают оригинальных идей, но все-таки могут добиться определенных успехов в открытии истины. Напротив, физики, работающие «в темноте», выдвигают новые умозрительные идеи, которые не очень легко проверить. У них меньше шансов на успех, но если их идеи верны, если их открытия могут привести к революционным сдвигам в нашем понимании мира, то они окажутся в большем выигрыше. И такое различие в подходах гораздо более явственно в физике, чем в других науках.

Я понимаю тех, кого раздражают физики-мечтатели, исследующие эзотерические области вроде космологии или теории струн, ведь это те, кто предпочитает то тут, то там добавить пару параметров только для того, чтобы их уравнения выглядели эстетичнее, кто выдвигает гипотезу о бесконечности параллельных вселенных, чтобы уменьшить количество непонятного в нашей. Однако известны и некоторые примеры, когда такие исследователи натыкались на «золотую жилу».

Гений XX века Поль Дирак как раз и руководствовался в своих исследованиях красотой уравнений, что привело его к постулату о существовании антиматерии за несколько лет до того, как она была открыта в 1932 году. А ведь есть еще Марри Гелл-Ман и Джордж Цвейг, которые в середине 1960-х годов независимо друг от друга предсказали существование кварков, причем еще не существовало никаких экспериментальных данных о возможности существования таких частиц. Питеру Хиггсу пришлось ждать целых

Оставить комментарий:


Ваш e-mail является приватным и не будет опубликован в комментарии.