Библиотека knigago >> Наука, Образование: прочее >> Научная литература >> Динамика звёздных систем


СЛУЧАЙНЫЙ КОММЕНТАРИЙ

# 2012, книга: Бездна
автор: Кристоф Оно-ди-Био

"Бездна" Кристофа Оно-ди-Био - захватывающая и интригующая книга, которая оставит неизгладимое впечатление на читателя. Автор поднимает вечные вопросы о смысле жизни, любви и загадочной гибели, сплетая их в захватывающий и философский рассказ. Книга повествует о Лорин и Бене, двух молодых людях, которых объединяет загадочная смерть их близких. Их пути пересекаются, когда они пытаются разгадать тайны, окружающие эти трагедии. По мере того, как они углубляются в расследование, они...

СЛУЧАЙНАЯ КНИГА

Владимир Георгиевич Сурдин - Динамика звёздных систем

Динамика звёздных систем
Книга - Динамика звёздных систем.  Владимир Георгиевич Сурдин  - прочитать полностью в библиотеке КнигаГо
Название:
Динамика звёздных систем
Владимир Георгиевич Сурдин

Жанр:

Научная литература

Изадано в серии:

МАТЕМАТИЧЕСКОЕ ПРОСВЕЩЕНИЕ #12

Издательство:

Издательство Московского центра непрерывного математического образования

Год издания:

ISBN:

5-900916-90-1

Отзывы:

Комментировать

Рейтинг:

Поделись книгой с друзьями!

Помощь сайту: донат на оплату сервера

Краткое содержание книги "Динамика звёздных систем"

Великие астрономические открытия Николая Коперника, Тихо Браге, Иоганна Кеплера, Галилео Галилея положили начало новой научной эре, стимулируя развитие точных наук. Астрономии выпала большая честь заложить основания естествознания: в частности, создание модели планетной системы привело к появлению математического анализа.

Из этой брошюры читатель узнает о многих фантастических достижениях астрономии, сделанных в последние десятилетия.

Текст брошюры представляет собой дополненную автором обработку записи лекции, прочитанной им для школьников 9-11 классов 11 ноября 2000 года на Малом мехмате МГУ.

Брошюра рассчитана на широкий круг читателей: школьников старших классов, студентов младших курсов, учителей...

Читаем онлайн "Динамика звёздных систем". [Страница - 3]

разобьём слона на миллион частей и просуммируем силы от единицы до миллиона. Настольный компьютер сделает это за минуту, поскольку суммировать придётся простенькие члены. Но во времена Ньютона не было компьютеров, и любое суммирование или то, что мы теперь называем интегрированием по объёму, было чрезвычайно сложной операцией, ведь её приходилось выполнять пером на бумаге. И Ньютон не продвинулся бы далеко в исследовании Вселенной, если бы не две замечательные теоремы, которые ему удалось доказать.

I Теорема 1. Сферическое тело (тонкая сферическая оболочка) постоянной плотности притягивает любую точку, находящуюся вне его, так, как будто вся масса тела сосредоточена в его центре.

Эта изумительная теорема дала возможность небесным механикам — людям, которые занимаются расчётом движения планет и космических зондов, а также звёзд и галактик, — свести большинство задач о взаимодействии космических тел к задаче о притяжении двух точек. Дело в том, что почти все небесные тела, за редким исключением, можно уподобить последовательности вложенных друг в друга сфер, каждая из которых имеет постоянную плотность (которая обычно меняется лишь от центра к периферии). Например, у нашей Земли форма почти шарообразная, плотность растёт по направлению к центру, однако, разбив её на бесконечное количество сферических слоёв, вы убедитесь, что каждый из них притягивает внешнюю точку так, как будто вся масса сосредоточена в центре. Поэтому никакого суммирования или интегрирования не нужно.

Теорема 2. Если точку поместить внутри однородной сферы (причём в любом месте, а не только в центре), то она не ощутит притяжения сферы, поскольку силы, действующие на неё со стороны всех элементарных частей этой сферы, в точности уравновесятся.

Эта теорема очень помогла тем специалистам, которые изучают недра небесных тел: стало возможным решать задачи, мысленно поместив наблюдателя внутрь планеты и не заботясь о тех слоях вещества, которые находятся снаружи от него, поскольку их суммарное притяжение у сферической планеты в точности равно нулю.

Таким образом, снаружи сферы вы чувствуете, будто вас притягивает точка, а внутри сферы — вообще невесомость. Эти замечательные теоремы позволили даже во времена Ньютона, при полном отсутствии вычислительной техники, чрезвычайно точно решать интереснейшие задачи: о строении планет (в частности Земли), об их взаимном притяжении и движении в пространстве.


Движение двух точек под действием ВЗАИМНОГО ГРАВИТАЦИОННОГО ПРИТЯЖЕНИЯ

Ньютон решил задачу о том, как движутся две материальные точки, взаимно притягивающие друг друга, например, планета и её спутник. Вы, конечно, знаете решение этой задачи: под действием взаимного притяжения каждое из тел обращается по эллиптической орбите вокруг общего центра масс, лежащего в фокусах эллипсов. Орбиты тел подобны, но имеют разный размер, обратно пропорциональный массам тел. Если из инерциальной системы отсчёта, связанной с центром масс, перейти в неинерциальную, связанную с одним из тел, то второе обращается вокруг него также по эллиптической орбите (найдите сами её размеры).

Решение Ньютона, полученное в конце XVII века, подтвердило на основании новой по тем временам физики эмпирические открытия, сделанные Кеплером ещё в начале того же века: по результатам многолетних наблюдений, в основном проделанных датским астрономом Тихо Браге, Кеплер обнаружил, что планеты обращаются вокруг

Солнца по эллипсам с переменной скоростью, двигаясь так, что радиус-вектор (прямая, соединяющая планету и Солнце) за равные отрезки времени заметает равные площади, и что квадраты периодов обращения двух планет относятся как кубы больших полуосей их эллиптических орбит [4, 5]. Ньютон, используя сформулированные им законы механики и предположение о гравитационной силе, обратной квадрату расстояния, не только объяснил найденные Кеплером закономерности движения планет, но и доказал, что эллипс — лишь частный случай любого конического сечения (им может быть также парабола, гипербола, окружность или прямая), по которому происходит движение двух гравитационно взаимодействующих тел (рис. 1). Разумеется, если речь идёт о длительном движении связанных, т. е. не улетающих далеко друг от друга тел, то это эллипс или его частный случай — окружность (а почему не отрезок прямой?).

Оставить комментарий:


Ваш e-mail является приватным и не будет опубликован в комментарии.

Книги схожие с «Динамика звёздных систем» по жанру, серии, автору или названию: