Библиотека knigago >> Детская литература >> Детская образовательная литература >> Проблемы Гильберта (100 лет спустя)

Андрей Андреевич Болибрух - Проблемы Гильберта (100 лет спустя)

Проблемы Гильберта (100 лет спустя)
Книга - Проблемы Гильберта (100 лет спустя).  Андрей Андреевич Болибрух  - прочитать полностью в библиотеке КнигаГо
Название:
Проблемы Гильберта (100 лет спустя)
Андрей Андреевич Болибрух

Жанр:

Детская образовательная литература, Математика

Изадано в серии:

неизвестно

Издательство:

Издательство Московского центра непрерывного математического образования

Год издания:

ISBN:

неизвестно

Отзывы:

Комментировать

Рейтинг:

Поделись книгой с друзьями!

Помощь сайту: донат на оплату сервера

Краткое содержание книги "Проблемы Гильберта (100 лет спустя)"

Знаменитые проблемы, сформулированные Давидом Гильбертом на Парижском международном математическом конгрессе 1900-го года, оказали определяющее влияние на развитие математики XX столетия. Одна из целей этой брошюры - показать, что многие известные и достаточно сложные математические проблемы возникают вполне естественным образом, так что даже старшеклассник может понять причины появления этих проблем и их формулировки.
Текст брошюры представляет собой обработку записи лекции, прочитанной автором 23 октября 1999 года на Малом мехмате для школьников 9-11 классов.

Читаем онлайн "Проблемы Гильберта (100 лет спустя)". [Страница - 2]

class="book">континуум-гипотеза

Континуум-гипотеза, первая проблема Гильберта, относится к задачам оснований математики и теории множеств. Она тесно связана с такими простыми и естественными вопросами, как «Сколько?», «Больше или меньше?», и практически любой старшеклассник может понять, в чём состоит эта проблема. Тем не менее, нам потребуются некоторые дополнительные сведения, чтобы её сформулировать.

Эквивалентность множеств


Рассмотрим следующий пример. В школе проходит вечер танцев. Как определить, кого больше на этом вечере: девочек или мальчиков?

Можно, конечно, пересчитать тех и других и сравнить два полученных числа. Но гораздо проще дать ответ, когда оркестр заиграет вальс и все танцующие разобьются на пары. Тогда, если все присутствующие танцуют, значит, каждому нашлась пара, т. е. мальчиков и девочек одинаковое количество. Если же остались только мальчики, значит, мальчиков больше, и наоборот.

Этот способ, иногда более естественный, чем непосредственный пересчёт, называется принципом разбиения на пары, или принципом взаимно однозначного соответствия.

- 5 -

Рассмотрим теперь совокупность объектов произвольной природы — множество. Объекты, входящие в множество, называются его элементами. Если элемент х входит в множество X, это обозначают так: х ∈ X. Если множество Х1 содержится в множестве Х2, т. е. все элементы множества Х1 являются также элементами Х2, то говорят, что Х1 — подмножество Х2, и кратко записывают так: Х1 ⊂ Х2.

Множество конечно, если в нём конечное число элементов. Множества могут быть как конечными (например, множество учеников в классе), так и бесконечными (например, N {в оригинале ℕ - не уверен, что символ отображают все читалки } — множество всех натуральных чисел {1,2,3,...}). Множества, элементами которых являются числа, называются числовыми.

Пусть X и Y — два множества. Говорят, что между этими множествами установлено взаимно однозначное соответствие, если все элементы этих двух множеств разбиты на пары вида (х,у), где х ∈ X, у ∈ Y, причём каждый элемент из X и каждый элемент из Y участвует ровно в одной паре.

Пример, когда все девочки и мальчики на танцевальном вечере разбиваются на пары, и есть пример взаимно однозначного соответствия между множеством девочек и множеством мальчиков.

Множества, между которыми можно установить взаимно однозначное соответствие, называются эквивалентными или равномощными. Два конечных множества эквивалентны тогда и только тогда, когда в них одинаковое количество элементов. Поэтому естественно считать, что если одно бесконечное множество эквивалентно другому, то в нём «столько же» элементов. Однако, опираясь на такое определение эквивалентности, можно получить весьма неожиданные свойства бесконечных множеств.

Бесконечные множества


Рассмотрим любое конечное множество и любое его собственное (непустое и не совпадающее с ним самим) подмножество. Тогда элементов в подмножестве меньше, чем в самом множестве, т. е. часть меньше целого.

Обладают ли бесконечные множества таким свойством? И может ли иметь смысл утверждение, что в одном бесконечном

- 6 -

 множестве «меньше» элементов, чем в другом, тоже бесконечном? Ведь про два бесконечных множества мы можем пока только сказать, эквивалентны они или нет. А существуют ли вообще неэквивалентные бесконечные множества?

Далее мы последовательно ответим на все эти вопросы. А для начала приведём забавную фантастическую историю из книги Н. Я. Виленкина «Рассказы о множествах».* Действие происходит в далёком будущем, когда жители разных галактик могут встречаться друг с другом. Поэтому для всех путешествующих по космосу построена огромная гостиница, протянувшаяся через несколько галактик.

В этой гостинице бесконечно много номеров (комнат), но, как и положено, все комнаты пронумерованы, и для любого натурального числа n есть комната с этим номером.

Однажды в этой гостинице проходил съезд космозоологов, в котором участвовали представители всех галактик. Так как галактик тоже бесконечное множество, все места в гостинице оказались занятыми. Но в это время к директору гостиницы приехал его друг и попросил поселить его в эту гостиницу.

«После некоторых размышлений директор обратился к администратору и сказал:

— Поселите его в №1.

— Куда же я дену жильца этого номера? — удивлённо спросил администратор.

— А его переселите в №2. Жильца же из --">

Оставить комментарий:


Ваш e-mail является приватным и не будет опубликован в комментарии.