Библиотека knigago >> Науки естественные >> Математика >> Том. 22. Сон разума. Математическая логика и ее парадоксы


СЛУЧАЙНЫЙ КОММЕНТАРИЙ

# 1628, книга: Джунгли
автор: Валерий Витальевич Строкин

В своем новом романе "Джунгли" Валерий Строкин погружает читателей в захватывающее и преображающее путешествие в сердце непроходимых лесов Амазонки. Этот фантастический роман исследует хрупкую связь между человеком и природой, оставляя неизгладимый отпечаток на душе. Главный герой, молодой исследователь Макс, в сопровождении опытного гида отправляется в опасную экспедицию, чтобы раскрыть загадки джунглей. По мере того, как они углубляются, Макс обнаруживает, что джунгли гораздо...

СЛУЧАЙНАЯ КНИГА

Хавьер Фресан - Том. 22. Сон разума. Математическая логика и ее парадоксы

Том. 22. Сон разума. Математическая логика и ее парадоксы
Книга - Том. 22. Сон  разума. Математическая логика и ее парадоксы.  Хавьер Фресан  - прочитать полностью в библиотеке КнигаГо
Название:
Том. 22. Сон разума. Математическая логика и ее парадоксы
Хавьер Фресан

Жанр:

Математика

Изадано в серии:

Мир математики #22

Издательство:

Де Агостини

Год издания:

ISBN:

978-5-9774-0717-5

Отзывы:

Комментировать

Рейтинг:

Поделись книгой с друзьями!

Помощь сайту: донат на оплату сервера

Краткое содержание книги "Том. 22. Сон разума. Математическая логика и ее парадоксы"

На пути своего развития математика периодически переживает переломные моменты, и эти кризисы всякий раз вынуждают мыслителей открывать все новые и новые горизонты. Стремление ко все большей степени абстракции и повышению строгости математических рассуждений неминуемо привело к размышлениям об основах самой математики и логических законах, на которые она опирается. Однако именно в логике, как известно еще со времен Зенона Элейского, таятся парадоксы — неразрешимые на первый (и даже на второй) взгляд утверждения, которые, с одной стороны, грозят разрушить многие стройные теории, а с другой — дают толчок их новому осмыслению.

Имена Давида Гильберта, Бертрана Рассела, Курта Гёделя, Алана Тьюринга ассоциируются именно с рождением совершенно новых точек зрения на, казалось бы, хорошо изученные явления. Так давайте же повторим удивительный путь, которым прошли эти ученые, выстраивая новый фундамент математики.

Читаем онлайн "Том. 22. Сон разума. Математическая логика и ее парадоксы". [Страница - 3]

исключить из списка аксиом. Через эти сомнения прошли все греческие и арабские комментаторы «Начал» и исследователи эпохи Возрождения.

Каково же было удивление Франца Адольфа Тауринуса в то ноябрьское утро, когда он, вместо того чтобы, превзойдя лучшие умы в истории, довольствоваться заслуженной славой, получил письмо, в котором Гаусс признавался, что после тридцати лет размышлений пришел к выводу: может существовать геометрия, в которой пятый постулат не выполняется. Однако эту новую, неевклидову науку следовало сохранять в тайне до тех пор, пока не будут уточнены все детали ряда теорем, которые, казалось, противоречили общепринятым убеждениям, незыблемым на протяжении двух тысячелетий. Новую геометрию не приняли бы те, кто считал, что треугольники и круги, описанные в книге природы, выглядят именно так, как их описал Евклид, и никак иначе. Ведь, подобно Аристотелю для схоластиков, Евклид был не просто человеком, но источником почти священного знания.

* * *

ДИАЛОГ ИЗ ФИЛЬМА «АГОРА»

(РЕЖИССЕР АЛЕХАНДРО АМЕНАБАР, АВТОР СЦЕНАРИЯ МАТЕО ХИЛЬ, 2009)

Гипатия: Синезий, каково первое правило Евклида?

Синезий: Почему ты спрашиваешь меня?

Гапатия: Просто ответь мне.

Синезий: «Равные одному и тому же равны и между собой».

Гипатия: Хорошо. Разве не подобны мне вы оба?

Синезий: Да.

Гипатия: А ты, Орест?

Орест: Да.

Гипатия: Хочу сказать всем, кто находится в этой комнате: у нас больше сходств, чем различий, и что бы ни произошло на улицах, мы останемся братьями и сестрами. Мы братья и сестры. Запомните, что ссоры — удел простолюдинов и рабов.


Книгаго: Том. 22. Сон  разума. Математическая логика и ее парадоксы. Иллюстрация № 3
Афиша фильма «Агора», главной героиней которого является Гипатия Александрийская.

* * *

От неевклидовой геометрии — к теории относительности

Так могла бы начаться история, основанная на реальных событиях, в которой рассказывалось бы о Гауссе (1777–1855), измеряющем размеры многокилометрового треугольника, вершинами которого стали три горы в Германии. Целью эксперимента было определить, является геометрия пространства евклидовой или нет. По ходу истории к «королю математиков» присоединились бы другие действующие лица, в частности венгр Янош Бойяи (1802–1860) и русский математик Николай Лобачевский (1792–1856), которые при публикации своих открытий не испытывали таких опасений, как Гаусс.

В аристократических салонах ученые Европы восхищали бы публику, демонстрируя макеты удивительных поверхностей, на которых сумма углов треугольника была меньше 180°. Некто наверняка прервал бы одну из таких демонстраций, вскричав «Евклид умер!», а тот, кому были чужды революционные настроения, схватился бы за голову, потому что «никто не может одновременно служить двум господам: если геометрия Евклида истинна, то нужно исключить неевклидову геометрию из списка наук и поместить ее рядом с алхимией и астрологией»[1].

Однако на страницах книги, которую читатель держит в руках, рассказывается другая история. Она также начинается с открытия новой геометрии, но ее развязка еще более неожиданна: речь пойдет о первых экспериментах по созданию искусственного интеллекта и компьютерах. Неевклидовы модели не просто открывают путь в новые миры — важнейшее следствие их существования лежит в сфере философии. Евклид выбрал свои аксиомы потому, что их истинность была очевидной.

Тем не менее когда ученые обнаружили, что на некоторых поверхностях через данную точку можно провести бесконечно много прямых, параллельных одной и той же прямой, а на других поверхностях нельзя провести ни одной прямой, параллельной данной, вопрос о том, какие аксиомы являются истинными, утратил смысл. Почему постулат о параллельности прямых должен быть более истинным, чем постулаты, отрицающие его? В действительности корректность того или иного постулата будет зависеть только от того, какие объекты мы изучаем.

Альберт Эйнштейн (1879–1955) сумел извлечь пользу из сложившейся ситуации и благодаря неевклидовой геометрии решил задачу, не дававшую покоя самому Исааку Ньютону (1643–1727). Согласно закону всемирного тяготения, открытому Ньютоном в --">

Оставить комментарий:


Ваш e-mail является приватным и не будет опубликован в комментарии.